

How To Guide:

WAN Load Balancing with DNS Routing

Introduction

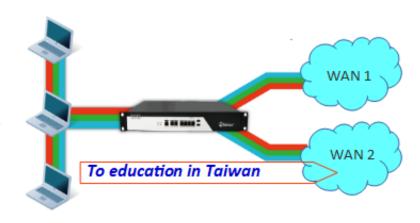
In a multiple WAN network, link load balancer or firewall usually decides the outbound path for a destined domain with the IP address from its first DNS lookup.

Issue

When new requests to the same destined domains arise, they will take the same path. However some domains, especially large organizations, have multiple IP addresses and randomly change their IP resolution from time to time. Therefore, path decisions based on destined FQDN cannot work accurately as new sessions will possibly not match the policy-based routing rules.

Solution: WAN Load Balancing with DNS Routing

With the advanced mechanism of DNS routing, the Q-Balancer is able to precisely route traffic to the Internet via a particular gateway based on the destined domain names. Whenever a request to a destined domain arises, the solution will dynamically check its updated DNS database and then decides the path.


Diagram Example

The following is a simplified version of network diagram:

On port 4

LAN Subnet: 10.168.1.0/24

Interface IP: 10.168.1.254

On port 1

WAN 1: example_1 IP: 203.67.222.40

Subnet: 203.67.222.40/30

GW:203.67.222.1

On port 2

WAN 2: example_2 IP: 100.100.100.6

Subnet:100.100.100.0/29

GW:100.100.100.1

Requirements

In this case, we are requested to:

- 1. direct all traffic to the Internet via WAN 1 and WAN 2 at the same time, while LAN users can still access the Internet when/if one of the WAN links is down or saturated.
- 2. direct traffic to all education organizations in Taiwan via WAN 2, and via WAN 1 in case WAN 2 is down.

Follow the steps below to configure the appliance:

- 1. WAN > ADD > Static
- 2. LAN > ADD
- 3. Object > Host > ADD > FQDN
- 4. Object > DPS > ADD > Weight Round Robin by Connection
- 5. Object > DPS > ADD > Priority
- 6. Policy Routing > ADD

WAN > ADD > Static

Name	
example_1	
Port	
Port 1	▼
Path Monitoring	
dns_ipv4	
Subnet	
203.67.222.40/30	
IP	
203.67.222.40	
Gateway	
203.67.222.1	
ОК	CANCEL

WAN > ADD > Static

Name example_2 Port Port 2 Path Monitoring dns_ipv4 Subnet 100.100.100.0/29 IP 100.100.100.6 Gateway 100.100.100.1 Down/Up Speed 15.3 / 2.9 Mbps

OK

CANCEL

WAN

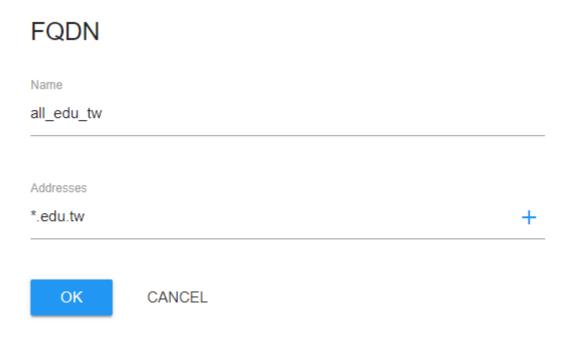
WAN configuration is done as follows:

WAN

ADI) ~	DELI	ETE							
Status	Type ↑↓	Name 1	↑↓ Port	↑↓ Interface ↑↓	Subnet	$\uparrow\downarrow$	IP	$\uparrow \downarrow$	Gateway	$\uparrow \downarrow$
~	Static	example_	1 Port 1	eth0_6	203.67.222.4	40/30	203.67.222	40	203.67.222	2.1
~	Static	example_	2 Port 2	eth1_2	100.100.100	.0/29	100.100.10	0.6	100.100.10	0.1

LAN > ADD

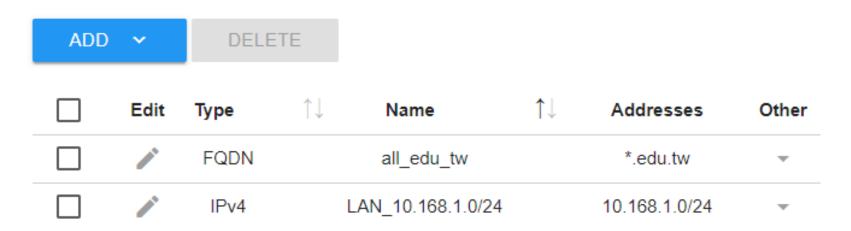
LAN


LAN configuration is done as follows:

LAN

ADD	DELE	ETE								
Name	$\uparrow \downarrow$	Port	$\uparrow\downarrow$	Interface	↑↓ Subnet	$\uparrow \downarrow$	Route	$\uparrow\downarrow$	IP	$\uparrow \downarrow$
LAN_10.168	3.1.0	Port	4	eth3_3	10.168.1.0	/24	Interfa	ce	10.168.1	1.254

Object > Host > ADD > FQDN



Object > Host

Host Object configuration is done as follows:

Hosts

Objects > DPS > ADD > WRR by Connection

This is for LAN users to access the Internet via both WAN links.

Object > DPS > ADD > Priority

Sending traffic destined for all.edu.tw via WAN 2, and via WAN 1 if/when WAN 2 is down.

Name	
Priority_DPS	
Backup Pool	
None	▼
Algorithm	
Priority	▼
example_1, example_2 Priority example_2 example_2 example_1	Dragging for priority adjustment
Proxy	

OK

CANCEL

Dynamic Path Selection (DPS)

DPS configuration is done as follows:

Dynamic Path Selection

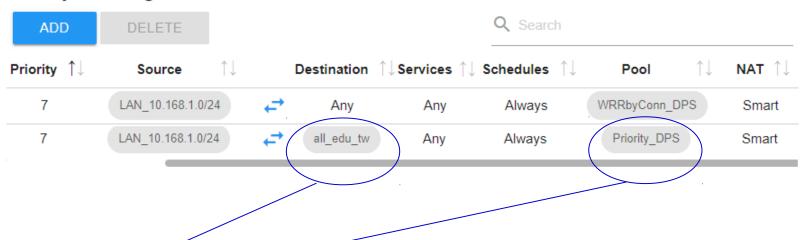
ADD		DELETE					
	Edit	Name	↑↓ Backup Pool	↑↓ Algorithm	$\uparrow\downarrow$	Information	Other
	-	Priority_DPS	-	Priority		example_2 example_1	~
		WRRbyConn_DP	S -	WRRC		example_1 1 example_2 1	~

Policy Routing > ADD

This is for all traffic to the Internet.

Priority		7	
Highest Source	0/24	Lowest	T
LAN_10.168.1 Destination	.0/24		+
Any			+
Direction Both Services	Request	O Reply	
Schedules Always	_	O Applications	т +
Pool WRRbyConn	_DPS		
NAT Smart	O Manual	O No	
OK	CANCEL		

Policy Routing > ADD


This is for the traffic destined for all.edu.tw.

Priority 7	
Highest Lowest Source	
LAN_10.168.1.0/24	+
Destination all_edu_tw	+
Direction Both O Request O Reply Services	
 Any O Services O Applications Schedules Always O Custom Choose your option 	т (‡)
Pool Priority_DPS	
NAT Smart O Manual O No	
OK CANCEL	

Policy Routing

Policy Routing

Policy Routing for traffic destined for all.edu.tw is done.

Done!

- 1. The LAN hosts of 10.168.1.0/24 should be able to access the Internet via both WAN links concurrently.
- 2. Check if traffic destined for all.edu.tw goes to the Internet via WAN 2.

```
C:\WINDOWS\system32\cmd.exe

C:\Users\installation>ping 8.8.8.8

Pinging 8.8.8.8 with 32 bytes of data:
Reply from 8.8.8.8: bytes=32 time=24ms TTL=56
Reply from 8.8.8.8: bytes=32 time=23ms TTL=56
Reply from 8.8.8.8: bytes=32 time=23ms TTL=56
Reply from 8.8.8.8: bytes=32 time=23ms TTL=56

Ping statistics for 8.8.8.8:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

Minimum = 23ms, Maximum = 24ms, Average = 23ms

C:\Users\installation>_
```